Количество 33
Количество 33
ELSA-2025-10371
ELSA-2025-10371: kernel security update (IMPORTANT)
ELSA-2025-10379
ELSA-2025-10379: kernel security update (IMPORTANT)

CVE-2025-21759
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.

CVE-2025-21759
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.

CVE-2025-21759
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.

CVE-2025-21759
CVE-2025-21759
In the Linux kernel, the following vulnerability has been resolved: i ...
GHSA-pvj3-f5v8-hgxh
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.

BDU:2025-04522
Уязвимость функции igmp6_send() модуля net/ipv6/mcast.c реализации протокола IPv6 ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации

CVE-2025-37799
In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/pay...

CVE-2025-37799
In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/payload...

CVE-2025-37799
In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/payloa
CVE-2025-37799
In the Linux kernel, the following vulnerability has been resolved: v ...

CVE-2025-21991
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with...

CVE-2025-21991
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with CONFIG_...

CVE-2025-21991
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting w

CVE-2025-21991
CVE-2025-21991
In the Linux kernel, the following vulnerability has been resolved: x ...
GHSA-5w6m-x8hm-6jcv
In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/pay...
GHSA-vp9x-33x6-jvvm
In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When bootin...
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
---|---|---|---|---|
ELSA-2025-10371 ELSA-2025-10371: kernel security update (IMPORTANT) | 9 дней назад | |||
ELSA-2025-10379 ELSA-2025-10379: kernel security update (IMPORTANT) | 10 дней назад | |||
![]() | CVE-2025-21759 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection. | CVSS3: 7.8 | 0% Низкий | 5 месяцев назад |
![]() | CVE-2025-21759 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection. | CVSS3: 7 | 0% Низкий | 5 месяцев назад |
![]() | CVE-2025-21759 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection. | CVSS3: 7.8 | 0% Низкий | 5 месяцев назад |
![]() | CVSS3: 7.8 | 0% Низкий | 3 месяца назад | |
CVE-2025-21759 In the Linux kernel, the following vulnerability has been resolved: i ... | CVSS3: 7.8 | 0% Низкий | 5 месяцев назад | |
GHSA-pvj3-f5v8-hgxh In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection. | CVSS3: 7.8 | 0% Низкий | 5 месяцев назад | |
![]() | BDU:2025-04522 Уязвимость функции igmp6_send() модуля net/ipv6/mcast.c реализации протокола IPv6 ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации | CVSS3: 7.8 | 0% Низкий | 5 месяцев назад |
![]() | CVE-2025-37799 In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/pay... | 0% Низкий | 2 месяца назад | |
![]() | CVE-2025-37799 In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/payload... | CVSS3: 7.1 | 0% Низкий | 3 месяца назад |
![]() | CVE-2025-37799 In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/payloa | 0% Низкий | 2 месяца назад | |
CVE-2025-37799 In the Linux kernel, the following vulnerability has been resolved: v ... | 0% Низкий | 2 месяца назад | ||
![]() | CVE-2025-21991 In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with... | CVSS3: 7.8 | 0% Низкий | 4 месяца назад |
![]() | CVE-2025-21991 In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with CONFIG_... | CVSS3: 6.7 | 0% Низкий | 4 месяца назад |
![]() | CVE-2025-21991 In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting w | CVSS3: 7.8 | 0% Низкий | 4 месяца назад |
![]() | CVSS3: 7.8 | 0% Низкий | 2 месяца назад | |
CVE-2025-21991 In the Linux kernel, the following vulnerability has been resolved: x ... | CVSS3: 7.8 | 0% Низкий | 4 месяца назад | |
GHSA-5w6m-x8hm-6jcv In the Linux kernel, the following vulnerability has been resolved: vmxnet3: Fix malformed packet sizing in vmxnet3_process_xdp vmxnet3 driver's XDP handling is buggy for packet sizes using ring0 (that is, packet sizes between 128 - 3k bytes). We noticed MTU-related connectivity issues with Cilium's service load- balancing in case of vmxnet3 as NIC underneath. A simple curl to a HTTP backend service where the XDP LB was doing IPIP encap led to overly large packet sizes but only for *some* of the packets (e.g. HTTP GET request) while others (e.g. the prior TCP 3WHS) looked completely fine on the wire. In fact, the pcap recording on the backend node actually revealed that the node with the XDP LB was leaking uninitialized kernel data onto the wire for the affected packets, for example, while the packets should have been 152 bytes their actual size was 1482 bytes, so the remainder after 152 bytes was padded with whatever other data was in that page at the time (e.g. we saw user/pay... | 0% Низкий | 2 месяца назад | ||
GHSA-vp9x-33x6-jvvm In the Linux kernel, the following vulnerability has been resolved: x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When bootin... | CVSS3: 7.8 | 0% Низкий | 4 месяца назад |
Уязвимостей на страницу