Количество 12
Количество 12
GHSA-hrh9-752p-34vj
In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadloc...

CVE-2024-47744
In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KVM x86, e.g. the same pattern of taking cpu_hotpl...

CVE-2024-47744
In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KV...

CVE-2024-47744
In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks

CVE-2024-47744
CVE-2024-47744
In the Linux kernel, the following vulnerability has been resolved: K ...

BDU:2025-03278
Уязвимость компонента KVM ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании

ROS-20250311-01
Множественные уязвимости kernel-lt

SUSE-SU-2024:3986-1
Security update for the Linux Kernel

SUSE-SU-2024:3984-1
Security update for the Linux Kernel

SUSE-SU-2024:4387-1
Security update for the Linux Kernel

SUSE-SU-2024:4318-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
---|---|---|---|---|
GHSA-hrh9-752p-34vj In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadloc... | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад | |
![]() | CVE-2024-47744 In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KVM x86, e.g. the same pattern of taking cpu_hotpl... | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад |
![]() | CVE-2024-47744 In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks in KV... | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад |
![]() | CVE-2024-47744 In the Linux kernel, the following vulnerability has been resolved: KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock on x86 due to a chain of locks and SRCU synchronizations. Translating the below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the fairness of r/w semaphores). CPU0 CPU1 CPU2 1 lock(&kvm->slots_lock); 2 lock(&vcpu->mutex); 3 lock(&kvm->srcu); 4 lock(cpu_hotplug_lock); 5 lock(kvm_lock); 6 lock(&kvm->slots_lock); 7 lock(cpu_hotplug_lock); 8 sync(&kvm->srcu); Note, there are likely more potential deadlocks | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад |
![]() | CVSS3: 5.5 | 0% Низкий | 7 месяцев назад | |
CVE-2024-47744 In the Linux kernel, the following vulnerability has been resolved: K ... | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад | |
![]() | BDU:2025-03278 Уязвимость компонента KVM ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании | CVSS3: 5.5 | 0% Низкий | 8 месяцев назад |
![]() | ROS-20250311-01 Множественные уязвимости kernel-lt | CVSS3: 9.1 | 3 месяца назад | |
![]() | SUSE-SU-2024:3986-1 Security update for the Linux Kernel | 7 месяцев назад | ||
![]() | SUSE-SU-2024:3984-1 Security update for the Linux Kernel | 7 месяцев назад | ||
![]() | SUSE-SU-2024:4387-1 Security update for the Linux Kernel | 6 месяцев назад | ||
![]() | SUSE-SU-2024:4318-1 Security update for the Linux Kernel | 6 месяцев назад |
Уязвимостей на страницу