Количество 10
Количество 10
GHSA-rv8h-hrgv-p5cw
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag ...

CVE-2025-21754
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in ...

CVE-2025-21754
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in the o...

CVE-2025-21754
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in
CVE-2025-21754
In the Linux kernel, the following vulnerability has been resolved: b ...

SUSE-SU-2025:0847-1
Security update for the Linux Kernel

SUSE-SU-2025:1180-1
Security update for the Linux Kernel

SUSE-SU-2025:1178-1
Security update for the Linux Kernel

SUSE-SU-2025:01919-1
Security update for the Linux Kernel
ELSA-2025-20480
ELSA-2025-20480: Unbreakable Enterprise kernel security update (IMPORTANT)
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
---|---|---|---|---|
GHSA-rv8h-hrgv-p5cw In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag ... | 0% Низкий | 5 месяцев назад | ||
![]() | CVE-2025-21754 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in ... | 0% Низкий | 5 месяцев назад | |
![]() | CVE-2025-21754 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in the o... | CVSS3: 5.5 | 0% Низкий | 5 месяцев назад |
![]() | CVE-2025-21754 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion failure when splitting ordered extent after transaction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in | 0% Низкий | 5 месяцев назад | |
CVE-2025-21754 In the Linux kernel, the following vulnerability has been resolved: b ... | 0% Низкий | 5 месяцев назад | ||
![]() | SUSE-SU-2025:0847-1 Security update for the Linux Kernel | 4 месяца назад | ||
![]() | SUSE-SU-2025:1180-1 Security update for the Linux Kernel | 3 месяца назад | ||
![]() | SUSE-SU-2025:1178-1 Security update for the Linux Kernel | 3 месяца назад | ||
![]() | SUSE-SU-2025:01919-1 Security update for the Linux Kernel | около 1 месяца назад | ||
ELSA-2025-20480 ELSA-2025-20480: Unbreakable Enterprise kernel security update (IMPORTANT) | 4 дня назад |
Уязвимостей на страницу