Количество 12
Количество 12
CVE-2020-11739
An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl...
CVE-2020-11739
An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl...
CVE-2020-11739
An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be able t
CVE-2020-11739
An issue was discovered in Xen through 4.13.x, allowing guest OS users ...
GHSA-5wwp-3576-jfjc
An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl...
openSUSE-SU-2020:0599-1
Security update for xen
SUSE-SU-2020:2234-1
Security update for xen
SUSE-SU-2020:1124-1
Security update for xen
SUSE-SU-2020:1634-1
Security update for xen
SUSE-SU-2020:1139-1
Security update for xen
SUSE-SU-2020:1138-1
Security update for xen
SUSE-SU-2020:1630-1
Security update for xen
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2020-11739 An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl... | CVSS3: 7.8 | 0% Низкий | почти 6 лет назад | |
CVE-2020-11739 An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl... | CVSS3: 7.4 | 0% Низкий | почти 6 лет назад | |
CVE-2020-11739 An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be able t | CVSS3: 7.8 | 0% Низкий | почти 6 лет назад | |
CVE-2020-11739 An issue was discovered in Xen through 4.13.x, allowing guest OS users ... | CVSS3: 7.8 | 0% Низкий | почти 6 лет назад | |
GHSA-5wwp-3576-jfjc An issue was discovered in Xen through 4.13.x, allowing guest OS users to cause a denial of service or possibly gain privileges because of missing memory barriers in read-write unlock paths. The read-write unlock paths don't contain a memory barrier. On Arm, this means a processor is allowed to re-order the memory access with the preceding ones. In other words, the unlock may be seen by another processor before all the memory accesses within the "critical" section. As a consequence, it may be possible to have a writer executing a critical section at the same time as readers or another writer. In other words, many of the assumptions (e.g., a variable cannot be modified after a check) in the critical sections are not safe anymore. The read-write locks are used in hypercalls (such as grant-table ones), so a malicious guest could exploit the race. For instance, there is a small window where Xen can leak memory if XENMAPSPACE_grant_table is used concurrently. A malicious guest may be abl... | CVSS3: 7.8 | 0% Низкий | больше 3 лет назад | |
openSUSE-SU-2020:0599-1 Security update for xen | почти 6 лет назад | |||
SUSE-SU-2020:2234-1 Security update for xen | больше 5 лет назад | |||
SUSE-SU-2020:1124-1 Security update for xen | почти 6 лет назад | |||
SUSE-SU-2020:1634-1 Security update for xen | больше 5 лет назад | |||
SUSE-SU-2020:1139-1 Security update for xen | почти 6 лет назад | |||
SUSE-SU-2020:1138-1 Security update for xen | почти 6 лет назад | |||
SUSE-SU-2020:1630-1 Security update for xen | больше 5 лет назад |
Уязвимостей на страницу