Количество 11
Количество 11
CVE-2022-49700
In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - check `slab == c->s...
CVE-2022-49700
In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - check `slab == c->s...
CVE-2022-49700
In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - che
CVE-2022-49700
In the Linux kernel, the following vulnerability has been resolved: m ...
GHSA-p247-4v6m-f77m
In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - ...
BDU:2025-04416
Уязвимость функции ___slab_alloc() модуля mm/slub.c подсистемы управления памятью ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации
BDU:2025-04558
Уязвимость функции hci_conn_del_sysfs() модуля net/bluetooth/hci_sysfs.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации
BDU:2025-05058
Уязвимость гипервизора Xen, связанная с взаимной блокировкой потоков выполнения, позволяющая нарушителю вызвать отказ в обслуживании
SUSE-SU-2025:1263-1
Security update for the Linux Kernel
SUSE-SU-2025:1027-1
Security update for the Linux Kernel
SUSE-SU-2025:1241-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2022-49700 In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - check `slab == c->s... | CVSS3: 7.8 | 0% Низкий | 12 месяцев назад | |
CVE-2022-49700 In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - check `slab == c->s... | CVSS3: 5.5 | 0% Низкий | 12 месяцев назад | |
CVE-2022-49700 In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - che | CVSS3: 7.8 | 0% Низкий | 12 месяцев назад | |
CVE-2022-49700 In the Linux kernel, the following vulnerability has been resolved: m ... | CVSS3: 7.8 | 0% Низкий | 12 месяцев назад | |
GHSA-p247-4v6m-f77m In the Linux kernel, the following vulnerability has been resolved: mm/slub: add missing TID updates on slab deactivation The fastpath in slab_alloc_node() assumes that c->slab is stable as long as the TID stays the same. However, two places in __slab_alloc() currently don't update the TID when deactivating the CPU slab. If multiple operations race the right way, this could lead to an object getting lost; or, in an even more unlikely situation, it could even lead to an object being freed onto the wrong slab's freelist, messing up the `inuse` counter and eventually causing a page to be freed to the page allocator while it still contains slab objects. (I haven't actually tested these cases though, this is just based on looking at the code. Writing testcases for this stuff seems like it'd be a pain...) The race leading to state inconsistency is (all operations on the same CPU and kmem_cache): - task A: begin do_slab_free(): - read TID - read pcpu freelist (==NULL) - ... | CVSS3: 7.8 | 0% Низкий | 12 месяцев назад | |
BDU:2025-04416 Уязвимость функции ___slab_alloc() модуля mm/slub.c подсистемы управления памятью ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации | CVSS3: 7.8 | 0% Низкий | больше 3 лет назад | |
BDU:2025-04558 Уязвимость функции hci_conn_del_sysfs() модуля net/bluetooth/hci_sysfs.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
BDU:2025-05058 Уязвимость гипервизора Xen, связанная с взаимной блокировкой потоков выполнения, позволяющая нарушителю вызвать отказ в обслуживании | CVSS3: 4.7 | 0% Низкий | 12 месяцев назад | |
SUSE-SU-2025:1263-1 Security update for the Linux Kernel | 10 месяцев назад | |||
SUSE-SU-2025:1027-1 Security update for the Linux Kernel | 11 месяцев назад | |||
SUSE-SU-2025:1241-1 Security update for the Linux Kernel | 10 месяцев назад |
Уязвимостей на страницу