Количество 6
Количество 6
CVE-2022-50453
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check.
CVE-2022-50453
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check.
CVE-2022-50453
In the Linux kernel, the following vulnerability has been resolved: g ...
GHSA-c44q-mxrg-grc2
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check.
SUSE-SU-2025:03628-1
Security update for the Linux Kernel
SUSE-SU-2025:03615-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2022-50453 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check. | CVSS3: 5.5 | 0% Низкий | 4 месяца назад | |
CVE-2022-50453 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check. | CVSS3: 5.5 | 0% Низкий | 4 месяца назад | |
CVE-2022-50453 In the Linux kernel, the following vulnerability has been resolved: g ... | CVSS3: 5.5 | 0% Низкий | 4 месяца назад | |
GHSA-c44q-mxrg-grc2 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check. | CVSS3: 5.5 | 0% Низкий | 4 месяца назад | |
SUSE-SU-2025:03628-1 Security update for the Linux Kernel | 4 месяца назад | |||
SUSE-SU-2025:03615-1 Security update for the Linux Kernel | 4 месяца назад |
Уязвимостей на страницу