Количество 1 025
Количество 1 025
CVE-2019-9511
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9511
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9511
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9511
Some HTTP/2 implementations are vulnerable to window size manipulation ...
BDU:2025-02664
Уязвимость программной платформы Node.js, связанная с отсутствием освобождения памяти после эффективного срока службы, позволяющая нарушителю вызвать отказ в обслуживании
BDU:2024-03125
Уязвимость программной платформы Node.js, связанная с недостатками обработки HTTP-запросов, позволяющая нарушителю отправить скрытый HTTP-запрос (атака типа HTTP Request Smuggling)
BDU:2024-02698
Уязвимость функции fetch() программной платформы Node.js, позволяющая нарушителю вызывать отказ в обслуживании (DoS)
GHSA-qgm6-9472-pwq7
Integer Overflow in openssl-src
CVE-2021-23840
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).
CVE-2021-23840
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).
CVE-2021-23840
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).
CVE-2021-23840
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may ...
BDU:2023-03312
Уязвимость криптографической библиотеки OpenSSL, связанная с ошибками процедуры подтверждения подлинности сертификата, позволяющая нарушителю обойти проверку политик для сертификата
GHSA-9259-5376-vjcj
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9515
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9515
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9515
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9515
Some HTTP/2 implementations are vulnerable to a settings flood, potent ...
BDU:2023-04973
Уязвимость функции X509_VERIFY_PARAM_add0_policy() библиотеки OpenSSL, позволяющая нарушителю выполнить атаку типа «человек посередине»
GHSA-w6v5-q8c8-52xx
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2019-9511 Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 18% Средний | около 6 лет назад | |
CVE-2019-9511 Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 6.5 | 18% Средний | около 6 лет назад | |
CVE-2019-9511 Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 18% Средний | около 6 лет назад | |
CVE-2019-9511 Some HTTP/2 implementations are vulnerable to window size manipulation ... | CVSS3: 7.5 | 18% Средний | около 6 лет назад | |
BDU:2025-02664 Уязвимость программной платформы Node.js, связанная с отсутствием освобождения памяти после эффективного срока службы, позволяющая нарушителю вызвать отказ в обслуживании | CVSS3: 5.3 | 0% Низкий | 9 месяцев назад | |
BDU:2024-03125 Уязвимость программной платформы Node.js, связанная с недостатками обработки HTTP-запросов, позволяющая нарушителю отправить скрытый HTTP-запрос (атака типа HTTP Request Smuggling) | CVSS3: 6.1 | 0% Низкий | больше 1 года назад | |
BDU:2024-02698 Уязвимость функции fetch() программной платформы Node.js, позволяющая нарушителю вызывать отказ в обслуживании (DoS) | CVSS3: 6.5 | 0% Низкий | больше 1 года назад | |
GHSA-qgm6-9472-pwq7 Integer Overflow in openssl-src | CVSS3: 7.5 | 0% Низкий | около 4 лет назад | |
CVE-2021-23840 Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | CVSS3: 7.5 | 0% Низкий | больше 4 лет назад | |
CVE-2021-23840 Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | CVSS3: 7.5 | 0% Низкий | больше 4 лет назад | |
CVE-2021-23840 Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | CVSS3: 7.5 | 0% Низкий | больше 4 лет назад | |
CVE-2021-23840 Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may ... | CVSS3: 7.5 | 0% Низкий | больше 4 лет назад | |
BDU:2023-03312 Уязвимость криптографической библиотеки OpenSSL, связанная с ошибками процедуры подтверждения подлинности сертификата, позволяющая нарушителю обойти проверку политик для сертификата | CVSS3: 5.3 | 0% Низкий | больше 2 лет назад | |
GHSA-9259-5376-vjcj Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 10% Средний | больше 3 лет назад | |
CVE-2019-9515 Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 10% Средний | около 6 лет назад | |
CVE-2019-9515 Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 10% Средний | около 6 лет назад | |
CVE-2019-9515 Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | CVSS3: 7.5 | 10% Средний | около 6 лет назад | |
CVE-2019-9515 Some HTTP/2 implementations are vulnerable to a settings flood, potent ... | CVSS3: 7.5 | 10% Средний | около 6 лет назад | |
BDU:2023-04973 Уязвимость функции X509_VERIFY_PARAM_add0_policy() библиотеки OpenSSL, позволяющая нарушителю выполнить атаку типа «человек посередине» | CVSS3: 5.3 | 1% Низкий | больше 2 лет назад | |
GHSA-w6v5-q8c8-52xx Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. | CVSS3: 7.5 | 2% Низкий | больше 3 лет назад |
Уязвимостей на страницу