Количество 10
Количество 10
BDU:2025-07234
Уязвимость функции prepare_trampoline() модуля arch/arm64/net/bpf_jit_comp.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации
CVE-2024-50203
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
CVE-2024-50203
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
CVE-2024-50203
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
CVE-2024-50203
In the Linux kernel, the following vulnerability has been resolved: b ...
GHSA-w83r-gj25-6vrc
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.
SUSE-SU-2025:0153-1
Security update for the Linux Kernel
SUSE-SU-2025:0117-1
Security update for the Linux Kernel
SUSE-SU-2025:0154-1
Security update for the Linux Kernel
SUSE-SU-2025:0289-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
BDU:2025-07234 Уязвимость функции prepare_trampoline() модуля arch/arm64/net/bpf_jit_comp.c ядра операционной системы Linux, позволяющая нарушителю оказать воздействие на конфиденциальность, целостность и доступность защищаемой информации | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
CVE-2024-50203 In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission. | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
CVE-2024-50203 In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission. | CVSS3: 6.7 | 0% Низкий | около 1 года назад | |
CVE-2024-50203 In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission. | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
CVE-2024-50203 In the Linux kernel, the following vulnerability has been resolved: b ... | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
GHSA-w83r-gj25-6vrc In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission. | CVSS3: 7.8 | 0% Низкий | около 1 года назад | |
SUSE-SU-2025:0153-1 Security update for the Linux Kernel | 12 месяцев назад | |||
SUSE-SU-2025:0117-1 Security update for the Linux Kernel | 12 месяцев назад | |||
SUSE-SU-2025:0154-1 Security update for the Linux Kernel | 12 месяцев назад | |||
SUSE-SU-2025:0289-1 Security update for the Linux Kernel | 12 месяцев назад |
Уязвимостей на страницу