Количество 16
Количество 16
CVE-2025-38463
In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtraction ...
CVE-2025-38463
In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtraction ...
CVE-2025-38463
In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtract
CVE-2025-38463
tcp: Correct signedness in skb remaining space calculation
CVE-2025-38463
In the Linux kernel, the following vulnerability has been resolved: t ...
GHSA-7fhq-j7h5-cjxg
In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtr...
BDU:2025-09816
Уязвимость функции tcp_bound_to_half_wnd() ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании
ELSA-2025-15782
ELSA-2025-15782: kernel security update (MODERATE)
SUSE-SU-2025:03023-1
Security update for the Linux Kernel
SUSE-SU-2025:02996-1
Security update for the Linux Kernel
SUSE-SU-2025:02969-1
Security update for the Linux Kernel
SUSE-SU-2025:02853-1
Security update for the Linux Kernel
SUSE-SU-2025:02997-1
Security update for the Linux Kernel
SUSE-SU-2025:03011-1
Security update for the Linux Kernel
ELSA-2025-20551
ELSA-2025-20551: Unbreakable Enterprise kernel security update (IMPORTANT)
SUSE-SU-2025:02923-1
Security update for the Linux Kernel
Уязвимостей на страницу
Уязвимость | CVSS | EPSS | Опубликовано | |
|---|---|---|---|---|
CVE-2025-38463 In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtraction ... | 0% Низкий | 3 месяца назад | ||
CVE-2025-38463 In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtraction ... | CVSS3: 7.3 | 0% Низкий | 3 месяца назад | |
CVE-2025-38463 In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtract | 0% Низкий | 3 месяца назад | ||
CVE-2025-38463 tcp: Correct signedness in skb remaining space calculation | CVSS3: 7.1 | 0% Низкий | 2 месяца назад | |
CVE-2025-38463 In the Linux kernel, the following vulnerability has been resolved: t ... | 0% Низкий | 3 месяца назад | ||
GHSA-7fhq-j7h5-cjxg In the Linux kernel, the following vulnerability has been resolved: tcp: Correct signedness in skb remaining space calculation Syzkaller reported a bug [1] where sk->sk_forward_alloc can overflow. When we send data, if an skb exists at the tail of the write queue, the kernel will attempt to append the new data to that skb. However, the code that checks for available space in the skb is flawed: ''' copy = size_goal - skb->len ''' The types of the variables involved are: ''' copy: ssize_t (s64 on 64-bit systems) size_goal: int skb->len: unsigned int ''' Due to C's type promotion rules, the signed size_goal is converted to an unsigned int to match skb->len before the subtraction. The result is an unsigned int. When this unsigned int result is then assigned to the s64 copy variable, it is zero-extended, preserving its non-negative value. Consequently, copy is always >= 0. Assume we are sending 2GB of data and size_goal has been adjusted to a value smaller than skb->len. The subtr... | 0% Низкий | 3 месяца назад | ||
BDU:2025-09816 Уязвимость функции tcp_bound_to_half_wnd() ядра операционной системы Linux, позволяющая нарушителю вызвать отказ в обслуживании | CVSS3: 7.3 | 0% Низкий | 4 месяца назад | |
ELSA-2025-15782 ELSA-2025-15782: kernel security update (MODERATE) | около 2 месяцев назад | |||
SUSE-SU-2025:03023-1 Security update for the Linux Kernel | 2 месяца назад | |||
SUSE-SU-2025:02996-1 Security update for the Linux Kernel | 2 месяца назад | |||
SUSE-SU-2025:02969-1 Security update for the Linux Kernel | 2 месяца назад | |||
SUSE-SU-2025:02853-1 Security update for the Linux Kernel | 3 месяца назад | |||
SUSE-SU-2025:02997-1 Security update for the Linux Kernel | 2 месяца назад | |||
SUSE-SU-2025:03011-1 Security update for the Linux Kernel | 2 месяца назад | |||
ELSA-2025-20551 ELSA-2025-20551: Unbreakable Enterprise kernel security update (IMPORTANT) | около 2 месяцев назад | |||
SUSE-SU-2025:02923-1 Security update for the Linux Kernel | 3 месяца назад |
Уязвимостей на страницу